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UAV-assisted Outdoor Hotspots

» Background

v" The UAV- BSs have a great potential in providing on-demand
communications services for dynamic flash crowds in marathon, g )
outdoor activities and etc.

> Problem

v User movements pose a significant challenge on fast
tracking for avoiding service interruption.

» Objective

v' The UAV-BSs are repositioned dynamically to provide
seamless services for flash and random crowds, while
minimizing the energy consumption in UAV-BSs’

trajectories. Fig. 2. UAV-aided communications for dynamic scenarios.
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Limitations Of The State-of-the-arts

__________ ___Contribution

The dynamic placement problem of UAV-BSs is
studied.

Finding the optimal placement of the UAV-BSs
while serving the UEs in the target area.

Peng, et. al, [1] Inaccurate prediction.

Fotouht, et. al, [2] Cannot track the UEs.

Maximizing the number of served users with the
minimum transmit power.

Finding the optimal trajectory of an UAV-BS to
serve multiple users.

Alzenad, et. al, [3] Static scenarios.

Bayerlein, et al. [4] Energy-consuming.
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The Proposed Solution—Consists of Three Steps

1st UEs Clustering 2nd UEs Tracking 39 UAV Re-deployment

A
to re-

for user for deployment UAVs
clustering. accurately users’ with the minimal
trajectories tracking. energy consumption.

Fig. 3. The proposed scheme for UAV-assisted Outdoor Hotspots.



Why is ESN chosen for Crowd
Movement Estimation?

> Short computation time and low energy V R W
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' Isity.
3) The links between neurons are sparsity. Fig. 7. The framework of an echo state network.

>V represents the input weight matrix,
> R is the reservoir weight matrix

> W is the output weight matrix.



What’s The Deep ESN Algorithm

> Reservoir architecture of the Deep Echo State Network.
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Fig. The Reservoir Architecture of A Deep Echo State Network.

[6] Gallicchio, Claudio, and Alessio Micheli. "Deep echo state network (deepesn): A brief survey." arXiv
preprint arXiv:1712.04323 (2017). 6



The Architecture of LEOPARD

We present a novel paralLEI Optimal deeP echo stAte netwoRk preDiction (LEOPARD) approach, aiming to

provide a fast and accurate prediction of UE’s movement (just like a leopard).
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Fig. The proposed LEOPARD for accurately trajectories tracking.



Energy-Efficient Re-deployment UAVs
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Fig. Re-position matching of multiple UAV-BSs.



Simulation Results for LEOPARD

» The predicted trajectory by LEOPARD is closest to the actual trajectory among all
predictions.
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Fig. The actual trajectory vs predicted trajectories.
Fig. The convergence behavior of the proposed LEOPARD

and benchmarks



